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Abstract
Rossby wave propagation theory is reviewed under two kinds 

of non-uniform basic flows: the zonal mean (ZM) and horizon-
tally non-uniform (HN) flows in this study. The diagrams in the 
wavenumber domain for stationary and non-stationary waves 
embedded in the ZM flow are given and discussed in comparison 
with previous studies. Then a circle diagram in the group velocity 
domain for waves embedded in the HN flow is derived from the 
formulas in forms of three vectors: the wavenumber, background 
wind and gradient of basic-state absolute velocity. Given the basic 
state, we can identify the maximum and minimum magnitude of 
group velocity and its departure from the background wind. These 
results provide insights into Rossby wave propagation behaviors 
in the real atmosphere. 

(Citation: Li, Y. J., J. Feng, J. P. Li, and S. Zhao, 2018: The 
Circle diagram in the group velocity domain for Rossby wave 
under the horizontally non-uniform flow. SOLA, 14, 121−125, doi: 
10.2151/sola.2018-021.)

1. Introduction

Classical Rossby wave theory (Rossby 1939, 1945; Yeh 1949)  
is developed in the framework of the β-plane barotropic nondiver-
gent vorticity model. However, this simplified framework neglects 
the spherical shape of the earth, as emphasized by Haurwitz 
(1940). Longuet-Higgins (1965) examined the validity of the 
β-plane approximation, and proved it to be of lower-order than the 
spheroidal approximation. Lindzen (1967) used two β-planes, one 
centered at the equator and the other at mid-latitudes, to simplify 
the spherical solution mathematically. Hoskins and Karoly (1981, 
herein referred to HK81) explored the Mercator projection to sim-
plify the spherical vorticity equation, and derived its WKB solu-
tions for disturbances embedded in a zonal mean (ZM) basic state. 
And many important properties derived from this theory match 
well with the observations on the atmospheric teleconnection. 
This motivate us to theoretically get knowledge on Rossby wave 
propagation in order to provide useful references for diagnosing 
and understanding the Rossby waves in the real atmosphere, and 
then further improve understandings on the climate variability 
resulted from these waves.

To demonstrate the properties of Rossby wave propagation, 
different diagrams are adopted to show the relations between wave 
parameters, including frequency, wavenumber, phase speed, and 

group velocity. Longuet-Higgins (1964) discussed the physical 
implications of these parameters in the wavenumber (k, l ) domain. 
The wavenumber locus is a circle centered on −β /2ω, 0 with the 
radius β /2ω  (Fig. 1), where β  is the meridional variation of the 
Coriolis parameter and ω is the angular frequency. In Fig. 1, OW

� ����  
denotes the wave number vector K = (k, l ), and the phase velocity 
and group velocity are parallel to OC

� ���
 and WC

� ���
, respectively. 

Therefore, waves oriented toward the northwest will have group 
velocity toward the south, and waves oriented toward the south-
west will have group velocity toward the north. This circle in Fig. 
1 clearly expresses the relationships among the wavenumber, 
phase velocity, and group velocity. Duba and McKenzie (2012) 
showed circle and ellipse diagrams in phase velocity and group 
velocity domains, respectively. Their work emphasizes the varia-
tion of β  in a simple basic flow. Classical textbooks (e.g. Pedlosky 
1980, 2003) also show analogous diagrams in various forms to 
document Rossby wave propagation properties. However, these 
works are mostly for waves without or with a simple background 
environment.

Our previous studies on the wave propagation theory under 
the horizontally non-uniform (HN) flow (Li and Li 2012; Li 
et al. 2015; Zhao et al. 2015) suggest that their properties largely 
distinct from those under the ZM flow as discussed in HK81, 
especially in the tropical easterly. Here, we attempt to further 
discuss this theory to reveal a circle diagram in the group velocity 
domain. This work is organized as follow. Section 2 reviews the 
situation under the ZM flow, as in HK81 and Yang and Hoskins 
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Fig. 1. Schematics for (a) a long-crested wave, slant lines are constant 
phase lines, and the arrow denotes the wavenumber vector, α  denotes the 
angle between the arrow and the x-axis; and (b) the circle locus of the 
wavenumbers in (k, l ) domain for free β-plane waves without the basic 
flow, following Fig. 1 in Longuet-Higgins (1964).
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(Hoskins et al. 1977; Branstator 1983; Noae et al. 1997). 
To be noted, the above mathematical equations and geomet-

rical map have limited valid range for wave propagation, which 
depends on the basic state and the wave scales or shapes. The 
circle diagram in the wavenumber domain for stationary waves 
shown in Fig. 2a is valid on the condition that r2 > 0. It means that 
stationary waves can propagate only in the westerly flow given 
that βM are positive (this assumption is used in this section). In 
the vicinity of the zero βM , the magnitude of the radius and group 
velocity decreases to zero. And when k approaches to zero, l tend 
to approach to r, and the magnitude of cg approaches to zero. In 
these situations, Fig. 2a is invalid. 

As u−M approaches to zero, the radius of this circle in (k, l ) 
domain tends to be infinity, which indicates that the waves are of 
extreme small scales. Their group velocity as defined by the Eq. (6) 
tends to be zero, which indicates that these waves cannot propa-
gate at the latitude with the zero zonal background flow. This situ-
ation corresponds to the “critical latitude” in HK81. While when l 
approaches to zero and k approaches to r, the zonal group velocity 
ug tends to be twice of u−M , and the meridional group velocity vg 
tends to be zero. This situation corresponds to the concept of 
“turning latitude” in HK81, at where a wave with positive l and vg 
tends to be reflected into a wave with negative l and vg , indicating 
the change in propagation direction. 

The abovementioned meridional propagation properties of 
Rossby waves are vital in get the knowledge of tropical-extratrop-
ical interaction and have been discussed in previous studies (e.g., 
HK81; HA93; Naoe et al. 1997; Enomoto and Matsuda 1999). 
Comparing with the stationary wave, relative fewer studies dis-
cussed on the non-stationary waves. Karoly (1983) examined the 
ray trajectory for 50-day and 20-day period waves with easterly 
phase velocity, and suggested a westward propagation across 
the easterly wind for waves with higher phase speed. Yang and 
Hoskins (1996) deliberated the propagation behaviors of non- 
stationary waves in terms of the wave theory and barotropic 
model. We here provide the basic diagram in the wavenumber 
domain as a supplementary.

For non-stationary waves, the diagram in the wavenumber 
domain differs from a circle diagram for the stationary waves, 
since the dispersion relation for them is a cubic equation in k and 
a quadratic equation in l as 

k l
u c

M

M

2 2+ =
−

β .  (7)

Given k, we have the real solutions of the meridional wavenumber 
in the form of

l
u c

kM

M

=±
−
−

β 2 ,  (8)

which requires that the quantity under the radical sign is positive. 
This means a restriction by the basic state on the changes of the 
zonal wavenumber k and the frequency to favor the meridional 
propagation. After mathematical deduction shown in the Supple-
mentary, we derived the range of propagation wavenumber as a 
function of the frequency and the zonal flow speed as Yang and 
Hoskins (1996) did,
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where 

(1996) and shows diagrams in the wavenumber domain. Section 
3 gives the fundamental theory in the HN flow and the diagram in 
the group velocity domain. Conclusions are given in Section 4.

2. Theory in the ZM flow

Following HK81, the dispersion relation for waves in the ZM 
flow ψ−(ϕ) is in the form of 

ω
β

= −
+

u k k
k lM

M
2 2  (1)

where ω  is the angular frequency, k and l are the zonal and merid-
ional wavenumber. uM = u /cos ϕ  is the zonal background flow 
under the Mercator projection. s

β ϕ ϕ ϕM Ma y y u= −∂ ∂ ∂ ∂ ( )[ ]2 12 2 2Ωcos / / / cos / cos  (2)

is the meridional gradient of the basic-state absolute vorticity. ϕ  is 
the latitude. Ω and a are the rotational frequency and radius of the 
earth, respectively. The phase speed along the x-axis c and group 
velocity cg = (ug, vg) are derived as 

c
k

u
k lM

M= = −
+

ω β
2 2 ,  (3)

cg Mc k
k l

k l=( )+
+( )

( ), , .0 2
2 2 2
β
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Comparing with the situation discussed by Longuet-Higgins 
(1964) in which waves are always non-stationary, the inclusion of 
the ZM basic flow allows for stationary waves with wavenumber 
satisfying

k l r2 2 2+ = ,  (5)

cg Mu k
r

k l= ( )
2

2 , ,  (6)

where r = ( βM /u−M)1/2. The locus of the wavenumber in the (k, l ) 
domain is a circle centered at (0, 0) with a radius OW

� ����
 at the mag-

nitude of r (shown as Fig. 2a). And the Eq. (6) suggests that the 
group velocity cg for stationary wave is parallel to its wavenumber 
vector K = (k, l ), which indicates that the stationary wave energy 
disperses normally to the constant phase lines. Therefore, station-
ary waves with a NE–SW tilted constant phase line (kl < 0) tend 
to propagate southward, while those oriented SE–NW (kl > 0) 
tend to propagate northward. And the zonal dispersion is always 
toward the east. These characteristics of wave shapes and propa-
gation can be observed from previous barotropic model results 

Fig. 2. Locus of the wavenumbers in (k, l ) domain for (a) stationary waves 
and (b) non-stationary waves embedded in a zonal mean basic flow u−M  
greater than ue

M
=− ω

β
2

4 . k1 and k2 denote the two solutions for k to Eq. (8)  
when l = 0, OW

� ����
 denotes the wavenumber vector, OC

� ���
 and OC¢

� ����
 denote the 

phase velocity along the x-axis and group velocity separately.
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kc corresponds to the critical latitude where u−M - c approaches 
to zero, while k1 and k2 correspond to the turning latitude where 
the meridional wavenumber tends to be zero. The Eq. (9) is 
correspondent to Fig. 2 in Yang and Hoskins, while differs in two 
places. One is that their work considered positive values of k, 
while both positive and negative are included here. The other that 
there is no waves with the positive frequency exist in the easterly 
region in their work, while this kind of waves could exist with 
zonal wavenumber in the range of (k2, kc) or (0, k1). And following 
their work, we plotted an analogous schematic map for the prop-
agation wavenumber (shown in the Supplementary). In short, it 
is implied that non-stationary waves with specified zonal scales 
may propagate meridionally in the easterly background wind, and 
waves with westward phase velocity are more likely to propagate 
across the tropical easterlies than those with eastward phase 
velocity. These results are in consistence with previous studies. 

Based on the analysis on the Eq. (8), Fig. 2b shows the l – k 
schematic diagram for non-stationary waves for the situation with 
u−M > ue , which allows for k1 and k2 as real numbers. The curve is 
symmetric about the k-axis, and intersects with it at (k1, 0), (k2, 0), 

and (0, 0). For the same magnitude of k, we have 
β βM

M

M

Mu c u c−
>
−+ −

 

in the westerly jet for the positive frequency. Therefore, we can 
deduce from the Eq. (8) that the eastward phase pr2opagating 
waves (with k positive) tend to have a smaller scale than the west-
ward phase propagating waves (with k negative). Besides, Fig. 2b 
and Eq. (4) indicate that the group velocity (OC¢

� ����
) is the sum of the 

phase velocity vector (OC
� ���

) and the vector parallel to the wave-
number vector (OW ¢

� �����
). This means that the waves oriented SE–

NW with eastward (westward) phase velocity and those oriented 
NE–SW with westward (eastward) phase velocity will have a 
northward (southward) group velocity.

3. Theory in the HN flow

Following previous studies (Karoly 1983; Li and Nathan 
1997; Li et al. 2015), the dispersion relation for waves under the 
HN flow ψ− (λ , ϕ) can be written into both the scalar and vector 
forms as 

ω ω ω= + = ⋅doppler intrinsic A K,  (11)

where

A V
K

=( )= +
×∇A A q

x y M, ,z
2  (12)
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×∇
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+
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K

K2 2 2 ,  (14)

q M=∇ +2 2 2ψ ϕ ϕ/ sin ,cos Ω  (15)

Ñ is the gradient operator and z is the vertical unit vector. q− is the 
basic-state absolute vorticity. q−x and q−y are the zonal and merid-
ional gradient of q−. ω doppler and ω intrinsic denote the Doppler-shift 
frequency and the intrinsic frequency, respectively. The formal 
results from the advection of a spatial phase pattern K past a static 
observer, denoting the Doppler-shifting effect by both zonal and 
meridional components of the background wind. The latter is the 
frequency observed by a device travelling with the basic flow VM 
= (u−M, v−M) (Bühler 2009), and it is determined by the wave’s spa-

tial structure and the gradient of the basic-state absolute vorticity. 
Let α , η , and γ  denote the angles of K, Ñq−, and VM with 

respect to the x-axis, that is,

k l, , ,( )= ( )K cos sinα α  (16)
q q qx y, , ,( )= ∇ ( )cos sinη η  (17)
u vM M M, , ,( )= ( )V cos sinγ γ  (18)

we can derive the phase velocity and group velocity from Eq. (11). 
The phase velocities that depict constant phase lines propagating 
along the x- and y-axes are

c
k

A Ax x y= = +
ω

αtan ,  (19)

c
l

A Ay x y= = +
ω

αcot ,  (20)

respectively. The phase velocity vector parallel to the wavenumber 
vector K is defined as

c A k A l
p x y

���
= = +( )ω

K
K

K K
K
K2 .  (17)

The group velocity is obtained into a different form from both 
Karoly (1983) and Li and Nathan (1997), that is 

c V cg g g M gu v=( )= +, Æ,ĉ g , (18)

 ĉ gÆ , .c
Kg
q

=
∇

−( ) −( )( )2 2 2sin cosη α η α  (19)

Corresponding to the wave frequency, the first term of Eq. (18) 
denotes the explicit advection by the background flow, and the 
second is the intrinsic group velocity determined by both the 
magnitude (|Ñq− |) and the orientations of the basic-state absolute 
vorticity gradient and the wavenumber vector (η  and α). The 
difference between cg and VM denotes the intrinsic group velocity 
ĉg . It can be inferred from this equation that the environment with 
a strong absolute-vorticity gradient favors a large-scale wave 
propagating away from the basic flow, while that with a weak 
absolute-vorticity gradient favors a higher wavenumber wave 
propagating along the background flow.

Further, we identify that the group velocity vector cg in the 
group velocity domain must satisfy

u u v v Rg M g M−( ) + −( ) =2 2 2 ,  (20)

where R = |Ñq− | / |K|2. This equation indicates a circle centered 
at the point (u−M , v−M) with a radius proportional to the basic-state 
absolute vorticity gradient |Ñq− | and the wavelength |K|. This 
circle diagram is appropriate for both stationary and non-station-
ary waves. Figure 3 shows its schematic maps in terms of the 
magnitudes of |VM | and R. Three situations may occur: the origin 
O is outside (R < |VM |), on (R = |VM |), or inside (R > |VM |) the 
circle. Approximately, these three situations are correspondent 
to waves embedded in the middle-latitude westerly jet that are 
with westward phase velocity, stationary and with eastward phase 
velocity respectively. This could be inferred from the wavenumber 
equation as

K q
cM x

2 =
∇
−

−( )

−( )V
sin
cos

.η α
γ α  (21)

The geometry of the circle diagram provides insights into sev-
eral particular propagation behaviors for Rossby waves. The prop-
agation behaviors in Fig. 3a are discussed in detail, where OA

� ���
 

denotes the basic wind vector VM , the terms C, D, E, and F indi-
cate particular termini of cg . C¢, D¢, and F¢ are the other intersec-
tions of the diameter with the circle linked to C, D, and F. From 
Eq. (19), the angle between ĉg and the x-axis can be determined as 
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π
α η

2
2+ − . Based on this, we can get several special wave energy 

dispersion properties as follow. 
(1) For termini C and C¢, cg is parallel to VM , and its maximum 

magnitude is |VM | + R and minimum magnitude |VM | - R is 
respectively. Correspondingly, the maximized group velocity 
OC
� ���

 and the minimized group velocity OC¢
� ����

 departure from the 
x-axis at angles 12 2η γ π+ −( ) and 12 2η γ π+ +( ), respectively. 
Therefore, we can express the energy dispersion direction 
simply by the following rules: cg is on the left side of VM (when 
looking leeward) when η γ

π
α η γ

π
+ − < < + +

2
2

2 , and it is 

on the right side of VM when η γ
π

α η γ
π

+ − < < + −
3
2

2
2

.
(2) For termini E or E¢, cg is perpendicular to ĉg, and the ray tra-

jectory lies to the left or right of the background wind vector, 
with maximum departure angles 2α  − η  or η  − 2α  − π  from 
the x-axis. The magnitude of cg is given by the square root of 
|VM |

2 + R2.
(3) For termini D or D¢, α  equals η / 2 or (π  + η) / 2, the zonal 

propagation is the same as the zonal flow, and the meridional 
propagation reaches a maximum relative to the meridional 
flow at a speed of R in the same or opposite direction.

(4) For termini F or F¢, α  equals (η  − π / 2) / 2 or (η  + π / 2) / 2, the 
meridional propagation is the same as the meridional flow, 
and the zonal propagation relative to the zonal flow attains a 
maximum at a speed of R in the same or opposite direction.

The wave behaviors for termini C, D, and F (or C¢, D¢, and F¢) are 
the same in the other two situations with the origin O on (Fig. 3b) 
and inside (Fig. 3c) the circle. In Fig. 3c, E and E¢ denote wave 
energy propagation in the direction perpendicular to the back-
ground wind vector at a speed R M

2 2- V . 
Additionally, the Eqs. (11)−(20) can be simplified into the 

same form as those in the ZM flow. And the locus of the group 
velocity in (ug , vg ) domain for waves in the ZM flow can also 
be derived as a circle in the similar way as a simplified Fig. 3. 
So, we don’t give the details on it. We need to note that Fig. 2 is 
for waves under the ZM flow in the wavenumber (k, l ) domain, 
while Fig. 3 is for waves under the HN flow in the group velocity 
(ug , vg ) domain. We attempted to get the diagram for waves under 
the HN flow in the (k, l ) domain, but it is found hard to derive 
a uniform diagram because there are more complex basic-state 
quantities determining wave shapes for the HN case than the ZM 
case.

4. Conclusion

In this study, we reexamine the basis of the two-dimensional 
Rossby wave theory following previous studies (Hoskins and 

Karoly 1981; Karoly 1983; HA 1993; Li and Nathan 1997; Li 
et al. 2015). Since wave properties closely depend on the basic 
state, two types of the non-uniform flows are considered as media 
for Rossby wave propagation: the ZM flow varying with latitude 
and the HN flow varying with both longitude and latitude. 

Properties of stationary and non-stationary waves in the ZM 
flow are firstly reviewed, and schematic maps in the wavenumber 
domain for stationary and non-stationary waves are given under 
several assumptions respectively. And then relations between 
wave parameters (e.g., frequency, wavenumber, velocity) in the 
HN definition are highlighted. Karoly (1983) originally derived 
the formulas in the scalar forms. Li and Nathan (1997) discussed 
their vector forms. We here rewrite the phase velocity and group 
velocity formulas in terms of the magnitudes and angles of the 
wavenumber vector, the gradients of the basic-state absolute 
vorticity and the basic-state wind vector. A circle diagram for 
group velocity in the (ug , vg ) domain is identified to depict the 
group velocity vector as a sum of the background wind vector 
and the intrinsic group velocity vector. Several special behaviors 
are identified from the circle diagram, including the maximum 
and minimum group velocity, the maximum departures from the 
background wind vector. 

The two-dimensional wave propagation is viewed as the main 
mechanism of atmospheric wave train teleconnection (e.g. HK81, 
Trenberth et al. 1998). This study works on the fundamentals of 
the Rossby wave propagation theory, providing insights into the 
wave propagation properties. The circle diagram derived here 
shows us some special Rossby wave propagation behaviors. We 
can do further diagnosis based on them and track their propagation 
trajectories combining with the wave ray tracing method. These 
works are worthy to be deeply explored for their potential possi-
bility of helping us to detect the Rossby wave signals in the real 
atmosphere. But, we need to keep in mind that there is limitation 
in the wave scales and validity of the diagrams shown in this work 
due to the nonuniform background flow in the consideration.
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Supplement

Supplement includes the derivation of the Eq. (9).

Fig. 3. Locus of group velocity Γ in (ug , vg ) domain for waves embedded in the HN basic flow when the origin O (a) outside, (b) on, or (c) inside the circle. 
OA denotes the background wind vector, C, D, E, F denote special terminals of group velocity vector on the circle. E and E¢ in (a) are the two intersections 
between circle Γ (solid) and Σ (dashed, a circle centered at the origin O with the radius equal to the magnitude of OE

� ���
 and OE ¢

� ����
), while those in (c) are the 

two intersections between the circle Γ and the line which is perpendicular to OA
� ���

 and crossing the origin. Physical meanings are deliberated in the text.
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